Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Critical Engine Geometry Generation for Rapid Powertrain Concept Design Assessment

1998-02-23
981090
This paper presents some of the design rules used to calculate critical geometry of engine components, and the object-oriented component hierarchy system in PET. This paper also presents parametric solid model assembling schemes used to dynamically construct an assembly of whole powertrain systems. Some examples of powertrain concept design, such as the estimation of friction, packaging, and moving component clearances, will be presented. The computational efficiency of this concept design method will be compared to traditional methods also.
Technical Paper

Reverse Engineering of Geometrically Complex Automotive Structures Using X-Ray Computed Tomography and Digital Image Based Finite Element Methods

1998-02-01
981193
Stress analyses of complex automotive components can be nearly impossible to achieve due to extreme difficulties in generating a realistic finite element model. A digital image based finite element approach was used to generate a 3-D finite element model from computed tomography (CT) scans of two automotive transmission cases. For the first case, original CT slices of 1024x1024x208 provided by ARACOR Inc. (Sunnyvale, CA) were used to generate a 3-D finite element model containing nearly 400,000 8-node brick elements. For the second case, 770x870x759 CT slices were used to generate a 3-D finite element model containing approximately 650,000 3-D elements. The mesh data generation from CT data for both cases took 6 minutes each on an engineering workstation. The resulting finite element meshes were analyzed using a specially designed finite element equation solver.
Technical Paper

Analytical Benchmarking of Body Architectural Efficiency of Competitive Vehicles

2007-04-16
2007-01-0357
Hardware benchmarking of body overall stiffness and joint stiffness of the best-in-class competitive vehicles is a common practice in the automobile industry. However, this process does not provide design insights of competitive body structures, which relate stiffness performance to key architectural designs. To overcome this drawback, a CAD body-in-prime model of a competitive vehicle is developed using laser/optical scanning technology and a corresponding CAE model is built based on the CAD data. A deep-dive structural efficiency study is conducted using this model and “pros” and “cons” of the architectural design of each individual joint and each section of major load-carrying members of this body structure are identified. This analytical benchmarking (or reverse engineering) process enables a company to adopt best-in-class design practices and achieve competitive advantages in vehicle designs.
Technical Paper

Effect of Weld Geometry and HAZ Softening on Fatigue Performance of DP780 GMAW Lap Joint

2007-04-16
2007-01-0632
With the increasing demand for safety, energy saving and emission reduction, Advanced High Strength Steels (AHSS) have become very attractive materials for automobile makers. Welding of AHSS remains one of the technical challenges in the successful application of AHSS in automobile structures, especially when durability of the welded structures is required. In this study, 2.0 mm uncoated DP780 was investigated. GMAW welding parameters for lap joints of this steel were developed in order to obtain different weld geometries defined by weld toe angle, weld leg sizes, and weld penetration. Metallurgical properties of the joints were evaluated using optical microscopy and scanning electron microscopy (SEM). Static and fatigue tests were conducted on the welded joints. Effect of weld geometry and HAZ softening on fatigue performance including fatigue life, crack initiation site and propagation path of the joints will be analyzed.
Technical Paper

Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface

2007-04-16
2007-01-0649
The interface between a plenum and primary runner in log-style intake manifolds is one of the dominant sources of flow losses in the breathing system of Internal Combustion Engines (ICE). A right-angled T-junction is one such interface between the plenum (main duct) and the primary runner (sidebranch) normal to the plenum's axis. The present study investigates losses associated with the combining flow through these junctions, where fluid from both sides of the plenum enters the primary runner. Steady, incompressible-flow experiments for junctions with circular cross-sections were conducted to determine the effect of (1) runner interface radius of 0, 10, and 20% of the plenum diameter, (2) plenum-to-runner area ratio of 1, 2.124, and 3.117, and (3) runner taper area ratio of 2.124 and 3.117. Mass flow rate in each branch was varied to obtain a distribution of flow ratios, while keeping the total flow rate constant.
Technical Paper

Real Time Simulation of Virtual Pedestrians for Development of Pedestrian Detection Systems

2007-04-16
2007-01-0754
Optical based sensor systems for vehicle based detection and warning systems are under development to reduce accidents and limit injuries caused by accidents. (1, 2, 3) In order to validate these types of detection systems, it is necessary to perform real world tests. In the case of pedestrian detection systems, this is very difficult in the field for safety reasons. Instead, simulated tests are more desirable. This paper describes work to understand the effectiveness of using virtual pedestrians as surrogates for real world pedestrian detection.
Technical Paper

Environmentally Friendly and Low Cost Manufacturing – Implementation of MQL Machining (Minimum Quantity Lubrication)

2007-04-16
2007-01-1338
Near Dry or Minimum Quantity Lubrication (MQL) Machining eliminates conventional flood coolant from the machining processes. In doing so, MQL reduces oil mist generation, biological contamination of coolant, waste water volume, costs for capital equipment and regulatory permitting. MQL also improves recycling and transport of coolant contaminated chips [1]. Although MQL machining technology has several advantages compared to wet machining, widespread implementation will require a paradigm shift among end-users, machine suppliers, and cutting tool suppliers. Successful implementation of MQL machining requires a high technical understanding and a solid infrastructure to support maintenance and on-going continuous improvement [2].
Technical Paper

Modeling, Validation and Dynamic Analysis of Diesel Pushrod Overhead Bridged Valve Train

2007-04-16
2007-01-1256
A bridged valve train configuration exhibits complex dynamic behavior due to the uniqueness of the special elephant foot/bridge/valve structure. Consequently, this system arrangement presents significant design challenges in system stability at high speed, high load, wear, no-follow and valve seating velocity, etc. An efficient way to gain a thorough understanding of the behavior of this type of valve train system and to drive the valve train design improvement is through the use of an effective dynamic simulation tool. In this paper, an advanced CAE tool developed by Ford Motor Company for the bridged type valve train simulations has been described. This automated CAE tool provides a complete virtual ADAMS-based simulation environment for the pushrod bridged valve train system analysis. This paper also presents the correlation and validation between the simulations and the measurements. The design analysis for the bridged valve train has been discussed briefly in this paper.
Technical Paper

Cranktrain Design for Ford's HEV DI Diesel Engine

1998-08-11
981915
This paper focuses on the cranktrain design for Ford's HEV DI Diesel Engine called the DIATA. The design started with the piston pin. The minimum piston pin diameter for the lowest reciprocation weight was achieved by tapering the small end of the connecting rod. Geometry constraints sized the connecting rod's big end diameter, oil film analyses determined the width, and an FEA verified the design. Next, the crankshaft mains were sized to reach an acceptable factor of safety, bending and torsional stiffness, and oil films. Finally, the flywheel was sized to be the minimum weight to reduce transmission gear rattle to an acceptable level.
Technical Paper

Transient CFD Simulations of a Bell Sprayer

1998-09-29
982291
A methodology is developed that incorporates high resolution CFD flowfield information and a particle trajectory simulation, aimed at addressing Paint Transfer Efficiency (PTE) for bell sprayers. Given a solid model for the bell sprayer, the CFD simulation, through automeshing, determines a high resolution Cartesian volume mesh (14-20 million cells). With specified values of the initial shaping air, transient and steady-state flow field information is obtained. A particle trajectory visualization tool called SpraySIM uses this complicated flowfield information to determine the particle trajectories of the paint particles under the influence of drag, gravity and electrostatic potential. The sensitivity of PTE on shaping air velocity, charge-to-mass ratio, potential, and particle diameter are examined.
Technical Paper

Laser & Fine Plasma Trimming of Sheet Metal Parts for Low Volume Production

1998-09-29
982333
This study compared laser and fine plasma technology for cutting typical electro-galvanized steel and aluminum automotive stampings. Comparisons were made of various aspects of cut quality, accuracy, disturbance of parent material, cycle time, and capital and operating costs. A sensitivity analysis was included to determine how different scenarios would impact the operating costs. It was found that both processes were capable of high quality cuts at 3800mm/min. Capital savings were achievable through the fine plasma system, but careful consideration of the specific application was essential. This work will allow for an advised comparison of options for sheet metal flexible cutting.
Technical Paper

Analytical Life Prediction Modelling of an Automotive Timing Belt

2008-04-14
2008-01-1207
This paper presents a methodology that makes use of computer based analytical simulation methods combined with statistical tools to predict timing belt life. This allows timing belt life to be estimated with no requirement for running test engines and associated test equipment, which is both very time and expense exhaustive. A case study on a belt driven primary drive for a V6 Diesel engine was used to illustrate the methodology. A computer based dynamic model for the belt drive system was developed and validated, and a belt life prediction model was developed, which uses tooth load predictions from the analytical model. Statistical modeling of predicted damage accumulated to failure was used to estimate the model parameters given a limited set of belt life results from a motored rig test. The practical use of the model is illustrated by predicting belt life under customer usage.
Technical Paper

Laser Hybrid Welding of Aluminized Coated Boron Steel for Automotive Body Construction

2008-04-14
2008-01-1112
The automotive industry is in constant pursuit of alternative materials and processes to address the ever changing needs of their customer and the environment. This paper presents findings from a study using a laser hybrid process (laser with MIG) to join aluminum-silicon coated boron steel (USIBOR). In this report the influence of heat from the laser hybrid welding process and its effect on the coated boron steel is discussed. In order to understand the affect from laser hybrid joining process, bead on plate experiments were conducted using 1.0 mm, 1.6 mm and 2.0 mm thick coupons. Further, two lap joint configurations were also investigated using the 1.6 mm and 2.0 mm thick coupons. Based on the test results, a significant reduction in tensile strength was observed at the Heat Affected Zone (HAZ).
Technical Paper

CAI Combustion with Methanol and Ethanol in an Air-Assisted Direct Injection SI Engine

2008-06-23
2008-01-1673
CAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace.
Technical Paper

Numerical Analysis of Thermal Growth of Cast Aluminum Engine Components

2008-04-14
2008-01-1419
As-cast or as-solution treated cast aluminum A319 has copper solutions within its aluminum dendrite. These copper solutions precipitate out to form Al2Cu through a sequence of phase changes and bring with them volume changes at elevated temperatures. These volume changes, referred to as thermal growth are irreversible. The magnitude of thermal growth at a material point is decided by the temperature history of the material point. When an under aged or non heat treated cast aluminum is exposed to non-uniform temperature such as that during engine operation, thermal growth leads to non-uniform volume change and thus additional self balanced stresses. These stresses remain inside material as residual stresses even when the temperature of the material is uniform again. In the present paper, numerical analysis method for thermal growth is developed and integrated into engine operation analysis.
Technical Paper

An Estimation of Supporting Hand Forces for Common Automotive Assembly Tasks

2008-06-17
2008-01-1914
Assembly operators are rarely observed performing one-handed tasks where the unutilized hand is entirely inactive. Therefore, this study was designed to determine the forces applied to supporting hands, by automotive assembly operators, during common one-handed tasks such as hose installations or electrical connections. The data were computed as a percentage of body weight and a repeated measures analysis of variance (ANOVA) (p<0.05) was conducted. Supporting hand forces were observed to range from 5.5% to 12.1% of body mass across a variety of tasks. The results of this study can be used to account for these supporting hand forces when performing a biomechanical/ergonomic analysis.
Technical Paper

Static and Fatigue Performance of Fusion Welded Uncoated DP780 Coach Joints

2008-04-14
2008-01-0695
Typical automotive joints are lap, coach, butt and miter joints. In tubular joining applications, a coach joint is common when one tube is joined to another tube without the use of brackets. Various fusion joining processes are popular in joining coach joints. Common fusion joining processes are Gas Metal Arc Welding (GMAW), Laser and Laser Hybrid, and Gas Tungsten arc welding (GTAW). In this study, fusion welded 2.0 mm uncoated DP780 steel coach joints were investigated. Laser, Gas metal arc welding (GMAW), and laser hybrid (Laser + GMAW) welding processes were selected. Metallurgical properties of the DP780 fusion welds were evaluated using optical microscopy. Static and fatigue tests were conducted on these joints for all three joining processes. It was found that joint fit-up, type of welding process, and process parameters, especially travel speed, have significant impact on static and fatigue performance of the coach joints in this study.
Technical Paper

Stratified-Charge Engine Fuel Economy and Emission Characteristics

1998-10-19
982704
Data from two engines with distinct stratified-charge combustion systems are presented. One uses an air-forced injection system with a bowl-in-piston combustion chamber. The other is a liquid-only, high-pressure injection system which uses fluid dynamics coupled with a shaped piston to achieve stratification. The fuel economy and emission characteristics were very similar despite significant hardware differences. The contributions of indicated thermal efficiency, mechanical friction, and pumping work to fuel economy are investigated to elucidate where the efficiency gains exist and in which categories further improvements are possible. Emissions patterns and combustion phasing characteristics of stratified-charge combustion are also discussed.
Technical Paper

Piston Ring / Cylinder Bore Friction Under Flooded and Starved Lubrication Using Fresh and Aged Engine Oils

1998-10-19
982659
The friction reducing capability of engine oils in the piston ring/cylinder bore contact was investigated under fully-flooded and starved lubrication conditions at 100° C using a laboratory piston ring/cylinder bore friction rig. The rig is designed to acquire instantaneous transient measurements of applied loads and friction forces at the ring/bore interface in reciprocating motion over a 50.8 mm stroke. The effects of increasing load and speed on the friction coefficient have been compared with new and used engine oils of different viscosity that were formulated with and without friction modifying additives. Test results with fully formulated engine oils containing molybdenum dithiocarbamate (MoDTC) show that friction is always lower than that obtained with non-friction modified oils but in regions of persistent starvation the coefficient of friction can increase significantly, approaching levels equivalent to fully-flooded non-friction modified formulations.
Technical Paper

Investigation of a Ford 2.0 L Duratec for Touring Car Racing

1998-11-16
983038
This paper summarizes an investigative study done to evaluate the feasibility of a Ford Duratec engine in 2.0 L Touring Car Racing. The investigative study began in early 1996 due to an interest by British Touring Car Championship and North American Touring Car Championship sanctioning bodies to modify rules & demand the engine be production based in the vehicle entered for competition. The current Ford Touring Car entry uses a Mazda based V-6. This Study was intended to determine initial feasibility of using a 2.0 L Duratec V-6 based on the production 2.5L Mondeo engine. Other benefits expected from this study included; learning more about the Duratec engine at high speeds, technology exchange between a production and racing application, and gaining high performance engineering experience for production engineering personnel. In order to begin the Duratec feasibility study, an initial analytical study was done using Ford CAE tools.
X